Observation impact in data assimilation: the effect of non-Gaussian observation error
نویسندگان
چکیده
Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect of a non-Gaussian prior. The observation impact is measured in three ways: the sensitivity of the analysis to the observations, the mutual information, and the relative entropy. These three measures have all been studied in the case of Gaussian data assimilation and, in this case, have a known analytical form. It is shown that the analysis sensitivity can also be derived analytically when at least one of the prior or likelihood is Gaussian. This derivation shows an interesting asymmetry in the relationship between analysis sensitivity and analysis error covariance when the two different sources of non-Gaussian structure are considered (likelihood vs. prior). This is illustrated for a simple scalar case and used to infer the effect of the non-Gaussian structure on mutual information and relative entropy, which are more natural choices of metric in non-Gaussian data assimilation. It is concluded that approximating non-Gaussian error distributions as Gaussian can give significantly erroneous estimates of observation impact. The degree of the error depends not only on the nature of the non-Gaussian structure, but also on the metric used to measure the observation impact and the source of the non-Gaussian structure.
منابع مشابه
Observation impact in data assimilation: the effect of non-Gaussian observation error
Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect...
متن کاملObservation impact in data assimilation: the effect of non-Gaussian observation
Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect...
متن کاملMeasures of observation impact in non-Gaussian data assimilation
Non-Gaussian/non-linear data assimilation is becoming an increasingly important area of research in the Geosciences as the resolution and non-linearity of models are increased and more and more non-linear observation operators are being used. In this study, we look at the effect of relaxing the assumption of a Gaussian prior on the impact of observations within the data assimilation system. Thr...
متن کاملThe Interaction between Model Resolution, Observation Resolution and Observation Density in Data Assimilation: a Two-dimensional Study
In variational data assimilation, an optimal analysis is derived from the knowledge of background and observation error statistics. According to Daley (1993), the observation error can be divided into two components: the instrumental error of a measuring device and the representativeness error of an observation operator. The first one is often considered to be a white Gaussian noise, whereas th...
متن کاملModelling non-Gaussianity of background and observational errors by the Maximum Entropy method
The Best Linear Unbiased Estimator (BLUE) has widely been used in atmospheric and oceanic data assimilation (DA). However, when the errors from data (observations and background forecasts) have non-Gaussian probability density functions (pdfs), the BLUE differs from the absolute Minimum Variance Unbiased Estimator (MVUE), minimizing the mean square a posteriori error. The non-Gaussianity of err...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013